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Abstract

Strategies to achieve confidence that high-
dependability applications are correctly implemented
include testing and automated verification. Testing deals
mainly with a limited number of expected execution paths.
Verification usually attempts to deal with a larger number
of possible execution paths. While the impact of
architecture design on testing is well known, its impact on
most verification methods is not as well understood. The
Design for Verification approach considers verification
from the application development perspective, in which
system architecture is designed explicitly according to the
application’s key properties.

The D4V hypothesis is that the same general
architecture and design principles that lead to good
modularity, extensibility and complexity/functionality
ratio can be adapted to overcome some of the constraints
on verification tools, such as the production of hand-
crafted models and the limits on dynamic and static
analysis caused by state space explosion.

1. Introduction
High dependability systems can be characterized by

the need to satisfy a set of key properties at all times. This
includes standard properties like absence of deadlocks,

and application specific properties such as guaranteed
responses or “correct” results.

Testing at various “scope levels” is usually the
preferred way to check deterministic computation results,
but this approach is of limited value for checking
properties of concurrent programs. Since the scheduling
behavior typically cannot be controlled from the testing
environment, standard defects like race conditions and
deadlocks can easily be missed by testing. This is an
important case in which automated system verification
comes into play.

If verification is left until system integration, the target
system often is already too big and complex for
verification tools to handle it directly, which is especially
true for static analysis and model checking of concurrent
programs. As a result, target systems need to be modeled
in order to apply the tools, an expensive process that also
has the potential for introducing fidelity problems.
Because of the associated costs, model-assisted
verification can easily degenerate into a one-time-effort,
which simply does not match the evolutionary life cycle of
large systems. Lack of support for efficiently checking
formal properties in turn leads to minimal inclusion of
such properties in the specification and design phases,
which further decreases the effectiveness and value of
automated verification.

The Design for Verification (D4V) hypothesis is that
the same general architecture and design principles that
lead to good modularity, extensibility and complexity/-

1
The research described in this report was performed at NASA Ames Research Center’s Automated Software Engineering group and is funded by

NASA'’s Engineering for Complex Systems program.



functionality ratio can be adapted to overcome some of
the constraints on verification tools.

The context of our D4V work is the development of
practical tools and methodologies based on source code
model checking technologies” such as Java PathFinder[1],
but the D4V concepts are intended to be applicable with a
broad range of verification approaches.

2. Traditional Approaches

One verification approach is based on architecture
design documentation (e.g. UML/OCL), with the intent of
producing correct architectures, from which code is more
likely to correctly implemented.

Another approach to overcoming the scalability
problem for verification tools is to improve the tools. In
the case of model checking, this involves techniques like
abstraction, slicing and partial order reduction. These are
necessary techniques for handling real applications.

Even with these sophisticated approaches, it still is too
easy to design applications so that they cannot be applied.
This is particularly due to the fact that in contemporary
programming environments, an increasing amount of
functionality is shifted from stand-alone applications into
libraries and frameworks, which either exceed the size
constraints of the verification tools, are or unavailable in a
suitable format to apply these tools.

3. The Design for Verifiability Approach

Our approach complements traditional approaches in
that we explicitly add verification- and testing-specific
considerations to the architecture design phase. The
general idea is to map key requirements of the
specification directly to dedicated, mostly invariant design
components, which can be verified separately. The goal is
to turn system verification into a development co-process
like regression testing.

We try to achieve this goal by using domain specific
design pattern collections. Each pattern instance comes
with a set of formal usage rules and guarantees. Usage
rules are subject to automated checks, mostly using
contracts (preconditions, post-conditions, and invariants)
and static analysis. The pattern selection process itself is
driven by evaluation of the guaranteed properties against
the key specification requirements. While this does not
ensure arbitrary, application-specific properties, it gives a
much better understanding of the formal correctness
model early in the development phase.

2 Source code model checkers take the source code of an application (or
some transformation of it) as the model. Examples include SPIN
and SLAM for C, and Java PathFinder for Java

Since these key patterns constitute design elements
that are mostly invariant during the implementation and
evolution of the system, the verification results are not
lost, and the tools can be re-applied at later stages of the
system lifecycle without modeling efforts.

The program design is centered around three concepts:
extension points, conceptual branch points, and check
points.

Extension points identify the components that can be
used to extend the functionality of the application without
breaking its design or causing feature bloat. Extension
points include potential base classes with their overridable
methods, and major delegation objects with their
associated interfaces, both with their corresponding
implementation constraints. Extension points allow
property verification during later stages of the lifecycle,
when system functionality is often extended without
having a suitable design infrastructure for these
extensions.

Conceptual branch points are the locations that are
relevant for both testing and model checking. This
includes non-deterministic operations, in particular
potentially blocking or context switching instructions in
multi-threaded programs, which are preferred targets for
backtracking. We are investigating program designs that
turn these branch points into choice generator calls,
enabling systematic testing and model checking in the real
execution environment. This is achieved by turning
implicit, execution environment specific behavior (like
thread scheduling) into explicit delegation objects (the
generators). To verify multi-threaded programs, this can
be used to effectively turn threads into co-routines, which
are systematically switched inside of the generator
objects. This approach is based on the assumption that (a)
concurrent systems should be designed around their
synchronization/communication points, and (b) these
operations are usually encapsulated into APIs or specific
language constructs anyway (i.e. can be easily
intercepted).

Check points describe the application-specific
correctness model, and map to freely-placeable assertions.
They can be thought of as required-to-be consistent,
usually global states, and should be mappable from/to the
system specification. A typical example is a check for
memory leaks after a certain operation has been
completed, to verify constant-space execution properties.
While evaluation of check points is straightforward
(provided the programming environment has a assertion
mechanism), reachability analysis and side-effect
detection of check points is again subject to tool support.

It is important to note that D4V does not attempt to
introduce a radically new design approach, but instead



extends existing “best design practices” towards
verifiability and testability. This comes with two
intentional side effects.

First, deliberate use of design patterns tends to
improve modularity and reduce “accidental complexity”.
This in general makes the system more understandable
and unit-testable, and reduces the relevant state space for
verification tools.

To quantify this aspect, we have taken a small.
moderately object-oriented. autonomous robot application
and re-designed it using design patterns.

old version new version
classes 82 37
interfaces 1 10
NCLOC 5926 1745
max WMC 397 56
sum WMC 1426 389
threads 6 2

Both systems were written in Java. WMC stands for
“Weighted Methods per Class” and represents the sum of
the cyclomatic complexities of its methods.

The pattern oriented re-design not only resulted in the
anticipated extensibility and test-suitability (esp. for unit
tests), but also showed a significant reduction in over-all
size, and a elimination of the complexity “hot spots”(max
WMC). Just the decrease in threads makes the system
more understandable, less error-prone (deadlocks), and
more verifiable (state space).

Second, D4V attempts to overcome the traditional gap
between design/development and testing/verification.
Because designers gain more scalable tools and tests, they
are encouraged to think more about application
correctness.

4. Project status

The D4V project is in an early stage. The current focus
is on the development of a suitable design pattern system.
Our first target domain is event driven, observable, state-
model based systems.

[1]1 W. Visser, K. Havelund, G. Brat, S. Park. “Model
Checking Programs”, Proceedings of the 15th
International Conference on Automated Software
Engineering (ASE), Grenoble, France, September 2000.



